1.使學生了解一階、二階常微分方程式、拉氏轉換、級數解等相關原理、計算與應用。
2.將數學理論與實際工程相結合並能靈活應用。

1.一階微分方程式：基本概念，變數可分離、正合微分方程式，積分因子，線性微分方程式，柏努 利方程式，一階微分方程式之應用。

2.二階線性微分方程式：基本性質，降階法，常係數線性齊次微分方程式，尤拉-科西方程式，微分運算子，非齊次微分方程式，二階微分方程式之應用，高階常係數微分方程式。

3.拉氏轉換：基本概念，拉氏轉換之基本性質，移位性質與週期函數，部分分式法與反拉氏轉換，迴旋積分，單位脈衝與狄拉克函數，拉氏轉換法解微分方程式。

4.線性微分方程式之級數解：預備知識，平常點之冪級數解，規則奇異點之冪級數解。

1.First order differential equations: introduction, separable variable differential equation, exact differential equation, integration factor, first order differential equation, Bernoulli’s equation, applications of the first order differential equation.
2.Second order differential equations: introduction, order reduction method, 2nd order homogeneous linear differential equation with constant coefficient, non-homogeneous linear differential equation with constant coefficient, Cauchy-Euler differential equation, differential operator and its applications, the application of . the 2nd order differential equation
3.Laplace transformation: introduction, basic properties of Laplace transformation, Translation theorem and periodic function, inverse Laplace transformation, convolution, unite impulse function and Dirac function, solving differential equation by Laplace transformation.
4. Series solutions of linear differential equations: introduction, series solutions of ordinary point, series solutions of regular singular point.

 Doc Pdf 連結(一) 連結(二)